طبقه بندی روش‌های پیش‌بینی تقاضا و فروش

یکی از وظایف مهم کارشناسان بازاریابی، پیش‌بینی تقاضا و فروش محصول است. برنامه‌ریزی و تحلیل طرح تجاری، بودجه بندی سالانه، طرح‌ها و کمپین‌های تبلیغاتی، تحلیل فروش محصولات جدید رقبا و … همگی نیازمند پیش‌بینی میزان فروش هستند. اینجاست که تحلیل‌گران داده می‌توانند به کارشناسان بازاریابی جهت انتخاب روش مناسب پیش‌بینی میزان فروش، پیاده‌سازی روش و ارزیابی و بهبود دقت مدل‌های پیش‌بینی کمک کنند.

برای پیش‌بینی به طور عام و پیش‌بینی فروش به صورت خاص، روش‌های متعددی وجود دارد و در کتابهای مختلف نیز به اشکال گوناگون دسته‌بندی شده‌اند. انتخاب روش مناسب برای پیش‌بینی، اولین گام برای این کار است. برای ارائه دسته‌بندی اولیه و کاربردی از روش‌های پیش‌بینی، ابتدا چند تعریف زیر ارائه می‌شود:

  • محصولات جدید: گاه محصولاتی هستند که داده‌های تاریخی فروش آنها در دسترس نیست یا اینکه بسیار کم در دسترس است (محصولات کاملا جدید) یا اینکه ممکن است کالاهایی شبیه به آن در بازار وجود داشته باشد (محصولات جدیدی که در امتداد محصولات فعلی در بازار، توسعه یافته‌اند).
  • محصولات بالغ (Harvest): محصولاتی هستند که داده‌های تقاضا و مصرف آن به صورت تاریخی وجود دارد و سری زمانی آن را می‌توان در قالب روندهایی تحلیل کرد.
  • برندهای در حال رشد: محصولاتی هستند که فروش آنها بسیار به برنامه‌های مارکتینگ و تبلیغات وابسته است و برای تحلیل آنها نیاز به بررسی روابط داده‌های موجود است.
  • محصولات جاویژه (Niche): محصولاتی که بخش خاصی از مصرف‌کنندگان را هدف قرار داده‌اند.

این تقسیم‌بندی در قالب مدل زیر نمایش داده شده است. در این مدل، محور افقی مربوط به «پیش‌بینی پذیری» و محور عمودی مربوط به ارزشی است که این کالا برای شرکت ایجاد می‌کند. در هر حال، قبل از هر کاری بایستی نوع کالا مشخص شده تا بر اساس آن روش پیش‌بینی تعیین و انتظارات مدیران از پیش‌بینی و دقت مورد انتظار از پیش‌بینی تعدیل شود.

26 forcasting methods 1

مدل تقسیم‌بندی محصولات بر اساس دو معیار «پیش‌بینی‌پذیری» و «ارزش»

با کمک مدل بالا و درک محدودیت‌های هر یک از روش‌های پیش‌بینی، روش‌های زیر برای هر یک از انواع محصولات پیشنهاد می‌شوند. بعضی از موارد در جدول زیر، مربوط به روش‌های کیفی و برخی نیز مربوط به روش‌های کمی هستند. این جدول نشان می‌دهد که یک شرکت یا کارخانه، نمی‌تواند بر اساس یک روش پیش‌بینی واحد، تقاضای همه محصولات خود را پیش‌بینی کند (چنانچه معمولا نرم‌افزارهایی که خریده‌اند، از چند روش محدود پشتیبانی می‌کند). بلکه بایستی با توجه به ماهیت محصول، روش مناسب را انتخاب کنند.

26 forcasting methods 2

روش‌های مناسب پیش‌بینی میزان فروش بر اساس نوع محصول

جدول بالا، راهنمایی ساده و کاربردی جهت تعیین روش پیش‌بینی میزان فروش محصولات مختلف است و شامل تمام روش‌های پیش‌بینی و تمام جزئیات دخیل در انتخاب مدل مناسب پیش‌بینی نیست. هرچند که نمای کلی خوبی از انواع مختلف محصولات از لحاظ پیش‌بینی‌پذیر بودن میزان فروششان، ارزشی که برای شرکت دارند و نیز روش مناسب پیش‌بینی بر اساس این دو معیار را به کارشناسان و مدیران شرکت می‌دهد. امیدواریم بتوانیم در آینده، روش‌های پیش‌بینی مناسب را با جزئیات بیشتری به همراه ذکر مثال بیان کنیم.

چنانچه شما نیز تجربه یا سوالی درباره‌ی پیش‌بینی میزان فروش دارید، با ما و سایر خوانندگان دیتا پارتنرز در میان بگذارید. اگر صاحب کسب و کاری هستید، یا سمتتان در شرکت به گونه‌ایست که به داده‌های تاریخی فروش دسترسی دارید ولی تا کنون پیش‌بینی فروش برایتان مسئله نبوده است، پیشنهاد می‌کنیم حتما نگاهی به داده‌های تاریخی فروش شرکت خود بیاندازید و روند کلی و نوسانات فصلی آن را مشاهده و بررسی کنید. اولین قدم برای پیش‌بینی آینده، نگاه به گذشته است. هرچند که این، تمام ماجرا نیست.

پی‌نوشت:اگر علاقه‌مند پیگیری مداوم مطالب ما هستید، دیتا پارتنرز را در تلگرام، توییتر و اینستاگرام دنبال کنید.

استفاده از میانگین متحرک در تحلیل داده‌های فروش

فرض کنید که مدیر یک شرکت مشاوره هستید. وضعیت پروژه‌ها در این شرکت به گونه‌ای است که درآمدها به صورت ماهانه و منظم به شرکت تزریق نمی‌شود. درآمدهای به صورت دوره‌های نامنظم دو، سه یا چهار ماه یک بار به شرکت وارد می‌شوند. همچنین ممکن است این شرکت در هر ماه قراردادهایی برای پروژه‌های با طول دوره‌های متفاوت عقد کند. شکل زیر، نمودار فرضی درآمد این شرکت است.

moving avg 1

مدیر عامل این مجموعه یک سوال ساده دارد: درآمد شرکت از نظر ماهیانه رو به افول است یا رو به صعود؟ آیا درآمدهای شرکت دارای روند فصلی یا ماهیانه است؟ او کاملا به نوسانات فصلی و تغییرات ضربه‌ای در نمودار درآمد آگاه است. طبیعی است که از روی نمودار درآمد نمی‌تواند هیچگونه روندی را کشف کند. گاه صعودی و گاهی نزولی است و ظاهرا نمی‌توان نظم خاصی در این نمودار دید.

زمانی که سری‌های زمانی دارای نوسان زیادی هستند، نیاز به نوسان‌گیری است. نوسان‌گیری روش‌های مختلفی دارد. برای پاسخ به سوال مدیر عامل، یک راه معقول استفاده از نوسان‌گیری از روش میانگین متحرک است.

فرض کنید که میانگین طول پروژه‌های این شرکت، حدود ۳ ماه باشد. به جای نمایش سری زمانی درآمدها، می‌توان میانگین درآمد سه ماه گذشته را محاسبه و آن را رسم کرد. با این کار، هر درآمد محقق شده بین سه ماه به صورت مساوی تقسیم شده و  نوسانات سری زمانی درآمدها تا حد معقولی تعدیل می‌شود.

moving avg 2

نمودار بالا همچنان نوسان دارد. منتهی این بار این نوسانات آنقدر زیاد نیست که نتوان سری داده‌ها را تحلیل کرد. این نمودار نشان می‌دهد که درآمدهای شرکت از اواخر سال ۲۰۱۳ تا اواسط سال ۲۰۱۴، نسبت به سایر دوره‌ها کمتر است.

طبیعی است که انتخاب تعداد دوره‌های محاسبه میانگین متحرک بسیار مهم است. این دوره نه باید آنقدر بزرگ باشد که هیچ نوسانی را نشان ندهد و نه آنقدر کوچک که همچنان داده پر از نوسان باشد. این عدد بایستی با یک منطق درست انتخاب شود. برای نمونه، داده‌های درآمد همین شرکت با میانگین متحرک چهارماهه مجددا رسم شد. همانطور که از نمودار آن مشخص است، نوسان‌ها کمتر شده و در عین حال کاهش فروش شرکت در سال ۲۰۱۳ و بخشی از ۲۰۱۴ مشهودتر است.

moving avg 3

روش بالا، راهکاری ساده برای تعدیل نوسانات است که به راحتی می‌توان آن را در اکسل پیاده‌سازی کرد. برای تحلیل‌های پیشرفته سری زمانی، نیاز به روش‌های پیچیده‌تری برای نوسان‌گیری است که از حوصله این مطلب خارج است.